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We study the percolation phase transition in hierarchical scale-free nets. Depending on the method of
construction, the nets can be fractal or small world �the diameter grows either algebraically or logarithmically
with the net size�, assortative or disassortative �a measure of the tendency of like-degree nodes to be connected
to one another�, or possess various degrees of clustering. The percolation phase transition can be analyzed
exactly in all these cases, due to the self-similar structure of the hierarchical nets. We find different types of
criticality, illustrating the crucial effect of other structural properties aside from the scale-free degree distribu-
tion of the nets.
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I. INTRODUCTION

Many large complex nets, such as the Internet and the
World Wide Web, social networks of contact, and networks
of interactions between proteins, are scale free: the degree ki
�number of links attached to a node, i� has a distribution with
a heavy power-law tail, P�k��k−�. Because of their ubiqui-
tousness in everyday life, the structure and physical proper-
ties of scale-free nets have attracted much recent attention
�1�.

The percolation problem is of particular practical interest:
Is the integrity of the Internet compromised following ran-
dom breakdown of a fraction of its routers? What fraction of
a population ought to be vaccinated to arrest the spread of an
epidemic that spreads by social contact? Initial studies of
percolation addressed the case of stochastic scale-free nets,
where the links between the nodes are drawn at random, so
as to satisfy the scale-free degree distribution �for example,
by the algorithm due to Molloy and Reed �2��. These studies
showed that scale-free nets are resilient to random dilution,
provided that the degree exponent � is smaller than 3. Ex-
plicit expressions for the critical exponents characterizing the
transition as a function of � were also derived �3–6�.

Stochastic Molloy-Reed scale-free nets are limited,
though. Having fixed the degree distribution, all other struc-
tural properties �such as the extent of clustering, assortativity,
etc.� are fixed as well, in contrast with man-made and natural
scale-free nets that show a great deal of variation in these
other properties. In this paper, we study percolation in hier-
archical scale-free nets �7–9�. Hierarchical scale-free nets
may be constructed that are small world or not and with
various degrees of assortativity, clustering, and other proper-
ties �10�.

Hierarchical nets have been studied before, as exotic ex-
amples where renormalization group techniques yield exact
results �7–9�, including the percolation phase transition and
the q→1 limit of the Potts model �11,12�. We study perco-
lation directly, by focusing on the size of the giant compo-
nent �the largest component left after dilution� and the prob-

ability of contact between hubs �nodes of highest degree�.
Our aim is to elucidate the effect of the various structural
properties of the nets on the percolation phase transition
�22�. As we shall see below, whether the transition takes
place or not, and its character, depends not only on the de-
gree exponent �as in stochastic nets� but also on other fac-
tors.

II. HIERARCHICAL SCALE-FREE NETS

Hierarchical scale-free nets are constructed in a recursive
fashion. We focus on the special class of �u ,v� flowers �10�,
where each link in generation n is replaced by two parallel
paths consisting of u and v links, to yield generation n+1. A
natural choice for the genus at generation n=1 is a cycle
graph �a ring� consisting of u+v�w links and nodes �other
choices are possible�. The case of u=1, v=2 �Fig. 1� has
been studied previously by Dorogotsev, Goltsev, and Mendes
�DGM� �13�. In the following we assume that u�v, without
loss of generality.

All �u ,v� flowers are self-similar, as evident from an
equivalent method of construction: to produce generation n
+1, make w copies of the net in generation n and join them
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FIG. 1. The �1,2� flower, or DGM network. �a� Method of con-
struction: each link in generation n is replaced by two paths of 1
and 2 links long. �b� Generations n=1,2 ,3. �c� Alternative method
of construction: generation n+1 is obtained by joining three repli-
cas of generation n at the hubs �marked by A ,B ,C�.
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at the hubs �the nodes of highest degree�, as illustrated in
Fig. 1�c�.

It is easy to see, from the second method of construction,
that the number of links �the size� of a �u ,v� flower of gen-
eration n is

Mn = �u + v�n = wn. �1�

At the same time, the number of nodes �the order� obeys the
recursion relation

Nn = wNn−1 − w ,

which, together with the boundary condition N1=w, yields

Nn = �w − 2

w − 1
�wn + � w

w − 1
� . �2�

Similar considerations let us reproduce the full degree dis-
tribution. By construction, �u ,v� flowers have only nodes of
degree k=2m, m=1,2 , . . . ,n. Let Nn�m� be the number of
nodes of degree 2m in the �u ,v� flower of generation n; then,

Nn�m� = Nn−1�m − 1� + �w − 2�wn−1�m,1,

leading to

Nn�m� = 	�w − 2�wn−m, m � n ,

w , m = n .
�3�

As in the DGM case, this corresponds to a scale-free degree
distribution P�k��k−� of degree exponent

� = 1 +
ln�u + v�

ln 2
. �4�

The self-similarity of �u ,v� nets, coupled with the fact
that different replicas meet at a single node, makes them
amenable to exact analysis by renormalization group tech-
niques.

A. Network diameter and dimensionality

There is a vast difference between �u ,v� flowers with u
=1 and u�1. If u=1, the diameter Ln of the nth-generation
flower �the longest shortest path between any two nodes�
scales linearly with n. For example, Ln=n for the �1,2�
flower �13� and Ln=2n for the �1,3� flower. It is easy to see
that the diameter of the �1,v� flower, for v odd, is Ln= �v
−1�n+ �3−v� /2, and, while deriving a similar result for v
even is far from trivial, one can show that Ln��v−1�n.

For u�1, however, the diameter grows as a power of n.
For example, for the �2,2� flower we find Ln=2n, and, more
generally, if u+v is even �and u�1�,

Ln = �u + v
2

+
v − u

u − 1
�un−1 −

v − u

u − 1
.

For u+v odd one may establish bounds showing that Ln
�un. To summarize,

Ln � 	�v − 1�n , u = 1,

un, u � 1.
�5�

Since Nn��u+v�n, we can recast these relations as

L � 	ln N , u = 1,

Nln u/ln�u+v�, u � 1.
�6�

Thus, for u=1 the flowers are small world, similar to sto-
chastic scale-free nets with ��3. For u�1 the nets are in
fact fractal, with fractal dimension

d =
ln�u + v�

ln u
, u � 1, �7�

since the mass increases by u+v �from one generation to the
next� while the diameter increases by u. �1,v� flowers are
infinite dimensional. In �10� we showed how these nets may
be characterized by a different measure of dimension that
takes into account their small-world scaling.

The difference between flowers with u=1 and u�1 is
perhaps best exemplified by the �1,3� versus the �2,2�
flower �Fig. 2�. The nets have identical degree distributions,
node for node, with degree exponent �=3—similar to the
famed Barabási-Albert model �14�—but the �1,3� flower is
small world �or infinite dimensional�, while the �2,2� flower
is a fractal of dimension d=2.

B. Other structural properties

Upon varying u and v the hierarchical flowers acquire
different structural properties. Consider, for example, their
assortativity—the extent to which nodes of similar degree
connect with one another �15�. In the �1,3� flower, nodes of
degree 2m and 2m+1 are only one link apart, and the assorta-
tivity index is 0, while in the �2,2� flower the same nodes are
2m−1 links apart, and its assortativity index tends to −1/2 �as
N→��, indicating a high degree of disassortativity and more
in line with naturally occurring scale-free nets �16,17�. More
generally, the degree of assortativity, r, is r→ �v−3� /2v, for
u=1, and r→−2/ �u+v�, for u�1 �as N→�� �10,18�.

FIG. 2. �u ,v� flowers with u+v=4 ��=3�. �a� Small world: u
=1 and v=3. �b� Fractal: u=2 and v=2. The graphs may also be
iterated by joining four replicas of generation n at the appropriate
hubs.

HERNÁN D. ROZENFELD AND DANIEL BEN-AVRAHAM PHYSICAL REVIEW E 75, 061102 �2007�

061102-2



Another property of interest is clustering, a measure of
the likelihood for neighbors of a node to be neighbors of one
another �19�. �u ,v� flowers with u�1 have zero clustering:
the neighbors of a node are never neighbors of one another.
The DGM net �u=1, v=2� has clustering coefficient c

0.7998, and c gets smaller with increasing v �or degree
exponent ��, quite in line with the clustering coefficient of
everyday-life scale-free nets.

C. Decorated flowers

So far we have seen hierarchical nets that are either fractal
and disassortative �u�1� or small world and assortative �u
=1 and v�3�. It is also possible to obtain hierarchical nets
that are small world and disassortative at the same time. One
way to do this is by constructing a fractal �u ,v� flower �u
�1� and adding a link between opposite hubs at the end of
each iteration step: the additional link does not get iterated
�7–9�. Figure 3 illustrates this procedure for the case of the
�2,2� flower.

The added link has a negligible effect on the degree dis-
tribution: the degree exponent still approaches �=1+ln�u
+v� / ln 2, as n→�. On the other hand, it has a dramatic
effect on the diameter of the net, which now grows linearly
in n �logarithmically in N�, making it a small-world network.
The nets remain strongly disassortative: for example, for the
�2,2� flower the assortativity changes from −1/2 �without�
to −9/26 with the addition of the noniterated links. Finally,
the added links have a dramatic effect on the clustering of
the nets, which grows from zero to about 0.820 08, for the
�2,2� flower �9�.

The main point is that by manipulating the method of
construction one can generate scale-free nets with differing
structural properties. By changing one property at a time one
can then hope to understand their effect on various physical
phenomena, such as the percolation phase transition. One
can also construct nets that mimic everyday-life networks as
closely as possible. The decorated �2,2� flower, with its de-
gree exponent �=3, disassortativity, and high degree of clus-
tering, is a reasonable candidate for the latter.

III. PERCOLATION PHASE TRANSITION

We now turn to the study of percolation in hierarchical
scale-free nets. The recursive nature of the �u ,v� flowers,

coupled with their finite ramification, makes it possible to
obtain an exact solution by a real-space renormalization
group analysis, including the finite-size behavior around the
transition point.

Our plan is as follows. We first study percolation in frac-
tal hierarchical nets. Having finite dimensionality they re-
semble regular and fractal lattices, and the percolation phase
transition is similar to what is found there as well. We then
study percolation in the �1,v� flowers, which are small
world, as most everyday-life complex networks. Unlike,
everyday-life nets, the �1,v� flowers have no percolation
phase transition, even for v�3 or ��3. Clearly, the �1,v�
flowers fail to mimic everyday-life networks in some crucial
aspect—perhaps their high assortativity. We therefore con-
clude with an analysis of the decorated �2,2� flower. The
transition there most closely resembles that of everyday-life
nets, but some differences remain. We speculate on the miss-
ing ingredient that gives rise to that difference in Sec. IV.

A. Fractal scale-free nets

Consider the �2,2� flower as a prototypical example of
fractal hierarchical scale-free nets. In this net the distance
between opposite hubs �or the diameter� scales as Ln�2n and
the mass scales as Nn�4n�Ln

2, corresponding to a fractal
dimension of d=2. Suppose that each link is present with
probability p. Denote the probability for two opposite hubs
in generation n to be connected by P�p�; then P�, the analo-
gous quantity in generation n+1, is

P� = 2P2 − P4. �8�

Indeed, on iterating the flower to generation n+1 the prob-
ability of contact between opposite hubs depends on the ex-
istence of either of two parallel paths, each consisting of two
stringed copies of generation n. The probability that one of
the paths is connected is P2 and Eq. �8� follows: a naive
addition P2+ P2 overcounts the event that all four generation-
n units are connected �probability P4�.

Starting with P=1, for generation n=0, one can then
compute the probability of contact P for any other generation
�Fig. 4�. Equation �8� has an unstable fixed point at pc
= ��5−1� /2
0.618 �12�, where P��pc�= P�pc�= pc, and two
stable fixed points at P=0 and P=1. If p� pc, the contact

FIG. 3. Decorated �2,2� flower. Construction method: Top: each
link is replaced by two parallel paths of u and v links long and an
additional link �dashed line� that does not get iterated. Bottom: the
decorated �2,2� flower for generations n=1,2 ,3.

FIG. 4. �Color online� Contact probability between opposite
hubs in the �2,2� flower. Shown are the curves for generations n
=6, 8, 10, 12, and �.
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probability flows to P=1 �as n→�� and the system is in the
percolating phase. For p� pc, it flows to P=0 and there is no
percolation.

Near the percolation phase transition the contact probabil-
ity obeys the finite-size scaling relation

P = ���pL1/	� , �9�

where �p= p− pc and 	 is the critical exponent governing the
scaling of the correlation length,


 � �p − pc�−	. �10�

We can obtain 	 by evaluating the derivative of Eq. �8� at
p= pc:

 �P�

�p


pc

= �
�P

�p


pc

, �11�

where

� =  �P�

�P


pc

. �12�

Using Eq. �9� it then follows that

� = �Ln+1/Ln�1/	. �13�

In our case �=4�pc− pc
3�=6−2�5 and Ln+1 /Ln=2, yielding

	=1.635 28. . ..
Next, we address the probability that a site belongs to the

infinite incipient cluster �or the giant component� P��p� in
generation n. It obeys the scaling relation

P� = N−���pN�/�� . �14�

The finite-size scaling exponent � characterizes the size of
the giant component at the transition point, p= pc: Ng
�N1−�. The scaling function has a nonanalytic part �x�
�x�, for small x, so that near the transition point,

P� � �p − pc��. �15�

Let A, B, C, and D denote the probabilities that a site is
connected to exactly one, two, three, or four of the hubs,
respectively �Fig. 5�a��; then, P�=A+B+C+D. The analo-
gous quantities in generation n+1 are

A� = SQ ,

B� = SPQ + TQ2,

C� = SP2Q + T�2PQ2� ,

D� = SP3 + T�3P2Q + P3� . �16�

Here Q=1− P is the probability that opposite hubs �in gen-
eration n� are disconnected. S �T� denotes the event that only
one �two� of the hubs that the site reaches in generation n is
also a hub of generation n+1 �Fig. 5�b��. These are straight-
forwardly related to the A ,B ,C ,D:

S =
1

2
A + B +

1

2
C ,

T =
1

2
C + D . �17�

As a useful check, one may verify that P�� =A�+B�+C�
+D�=S+T. From Eqs. �16� and �17� we obtain a recursion
relation for S and T:

�S�

T�
� =�

1

2
Q�1 + P�2 Q2�1 + P�

1

2
P2�1 + P� P + P2 − P3��S

T
� . �18�

The scaling of the giant component is dominated by �, the
largest eigenvalue of the above matrix, evaluated at p= pc,

�N�/N�−� = � . �19�

In our case �= �7−2�5+�73−32�5� /4 and N� /N=4, yield-
ing �=0.050 3564. . . .

To obtain �, we derive Eq. �14� with respect to p,

 �P�

�


pc

= N��1−��/� �

�p
�0� � n�n−1 ��

�p


pc

 �P

�p


pc

,

where we used the fact that P��0���n. Doing the same for
P� and dividing the two relations, while using Eq. �11�, we
get

�N�/N���1−��/� → ��, as n → � . �20�

Substituting for the values of �, �, N� /N, and �, we find for
the �2,2� flower �=0.164 694. . . .

In summary, percolation in fractal scale-free nets is very
similar to percolation in fractal and regular lattices. As far as
we can tell, the broad scale-free degree distribution does not
give rise to any kind of anomalous behavior, different from
percolation in regular spaces. Note, for example, that the
contact probabilities P �Fig. 4� and P� �Fig. 6� follow the
same pattern as for percolation in regular spaces. Interest-
ingly, the exponents 	=1.635 28 and �=0.164 694 that we
find for the �2,2� flower �whose fractal dimension is d=2�
are not very different from the corresponding exponents in
regular two-dimensional space: 	=1.5076 and �=5/36
=0.138 88.

The scaling relations between critical exponents, familiar
from percolation in regular and fractal spaces, are obeyed as
well. Indeed, we may rewrite Eq. �13� as

FIG. 5. Contact probabilities used in the derivation of Eq. �16�.
See text.
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� = �N�/N�1/	d,

since d is the fractal dimension of the hierarchical flower and
N�Ld. Using this, in conjunction with Eqs. �19� and �20�,
we derive the scaling relation

� =
�

	d
. �21�

The giant component, at criticality, scales as

Ng � Ldg � Ndg/d,

where dg is its fractal dimension. Comparing this to Ng
�N1−�, on the one hand, and to Eq. �21�, on the other hand,
we get

dg = d −
�

	
, �22�

which is a well-known scaling relation for percolation in
regular space �20,21�.

The analysis carried out above for the �2,2� flower may
be extended for other values of u�1 and v. The recursion
relation between opposite hubs in the general case is

P� = Pu + Pv − Pu+v. �23�

As for the �2,2� flower, this has two stable fixed points at
P=0 and 1 and an unstable fixed point whose location at P
= pc may be computed numerically. One can then evaluate
the correlation length exponent 	, using Eqs. �12� and �13�
and keeping in mind that Ln+1 /Ln→u in the thermodynamic
limit. Results from such calculations are shown in Fig. 7.
There is general agreement with percolation in regular
d-dimensional lattices, especially for the particular case of
v=u �note the analytical continuation to noninteger values of
u and v�.

B. Small-world, assortative nets

We next turn to small-world nets and consider the �1,v�
flower as an example of this type of network. The mass of
the �1,v� flower grows like Nn��1+v�n, while the diameter
increases only logarithmically, Ln� ln Nn, making it a small-
world net of infinite dimensionality. As we shall shortly see,

there is no percolation transition, contradicting the finding
for percolation in random scale-free nets �3–6�. This may be
perhaps attributed to the fact that �1,v� flowers are quite
strongly assortative �highly connected nodes tend to be con-
nected to one another�, making them particularly resilient to
random dilution.

The recursion relation for the probability of contact be-
tween hubs in successive generations is now

P� = P + Pv − Pv+1, �24�

which has an unstable fixed point at p=0 and a stable fixed
point at p=1. In other words, regardless of the dilution level
p, contact between hubs is guaranteed in the thermodynamic
limit of N→�.

Let Ai �i=1,2 , . . . ,v+1� denote the probability that a
node is connected to exactly i adjacent hubs, in generation n.
The recursion relations for the analogous quantities in gen-
eration n+1 are

A1� = SQ ,

A2� = SPQ + TQ2,

�

Ai� = SPi−1Q + T�i − 1�Pi−2Q2,

�

Av+1� = SPv + T�vPv−1Q + Pv� , �25�

where

S =
2

v + 1
�A1 + A2 + ¯ + Av� ,

T =
1

v + 1
�A2 + 2A3 + ¯ + �v − 1�Av + �v + 1�Av+1�

�26�

have the same meaning as for the �2,2� flower, in the previ-
ous section. Analysis of these equations reveals that there is

FIG. 6. �Color online� P� for the �2,2� flower. Shown are curves
for generations n=6, 7, 8, 10, and �, obtained from P�=S+T and
iterating Eqs. �18� and �8�.

FIG. 7. �Color online� Correlation length exponent 	 for fractal
�u ,v� flowers �u�1�, plotted against their dimensionality d=ln�u
+v� / ln u ���. Shown are results for increasing u �bottom to top� and
increasing v �left to right�. The solid curve corresponds to v=u—a
case that is close, numerically, to regular d-dimensional space �+�.
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a finite probability P� for a site to belong to the giant com-
ponent, at any dilution level p. For p small,

P� � � 1

v + 1
�1/pv−1

, �27�

and there is an essential singularity at p=0. Practically,
though, it is impossible to tell whether P�=0 or not, for p
sufficiently small, and one could not rule out a percolation
phase transition at some pc�0 based on a numerical study or
on simulations alone �Fig. 8�.

C. Small-world, disassortative nets

Having failed to find a percolation transition in the assor-
tative �1,v� flowers, we now turn to the �2,2� flower with a
noniterated link �Fig. 3�. The recursion relation for the prob-
ability of contact between hubs in successive generations is

P� = 1 − �1 − p��1 − P2�2. �28�

Indeed, note that contact can be made through either of the
two paths consisting of two stringed copies of generation n
�with probability P2, in either case� or through the noniter-
ated link �with probability p�. The probability that none of
these three parallel paths make contact is therefore �1− p�
��1− P2�2, and P� follows.

In the thermodynamic limit, P�→P. It is easier to obtain
P�p� implicitly, inverting Eq. �28�:

p = 1 −
1

�1 + P��1 − P2�
.

One can thus see that P�p� is double valued for p�5/32. A
stability analysis reveals that only the lower branch is stable.
For p�5/32, the only available solution to Eq. �28� is P�
= P=1. This solution is stable as well. Thus, P�p� has a dis-
continuity at pc=5/32, where it jumps from P�pc

−�=1/3 to
P�pc

+�=1; see Fig. 9.
The recursion relations for the giant component are

slightly more involved than in previous cases. We define, as
usual, A ,B , . . . ,G as the probabilities that a node reaches
various hubs combinations in generation n �Fig. 10�a��. We
also denote by X the probability that, after embedding the nth

generation in generation n+1, the node reaches only one of
the hubs, connected to the noniterated link. Similarly, Y is
the probability that it reaches a single hub that is not con-
nected to the noniterated link and Z the probability that it
reaches both hubs �Fig. 10�b��. We then have

A� = XqQ ,

B� = YQ ,

C� = �X + Y�qPQ + ZqQ2,

D� = XpQ3,

E� = YqP2Q + ZqPQ2,

F� = X�pPQ2 + Q�qP2 + p�2PQ + P2���

+ YpPQ2 + ZQ2�qP + p� ,

G� = �X + Y�P�p�2PQ + P2� + qP2� + Z�1 − qQ2� , �29�

where

X =
1

2
�A + C + E� ,

FIG. 8. �Color online� P� for the �1,3� flower. Shown are curves
for generations n=6, 7, 8, 10, and �, obtained from P=�iAi and
iterating Eqs. �24�–�26�. Note that P� is indistinguishable from
zero, in the scale of the plot, for p below about 0.2.

FIG. 9. �Color online� Contact probability between opposite
hubs for the decorated �2,2� flower. Shown are curves for genera-
tions n=6, 8, 10, 12, and �, obtained from iteration of Eq. �28�.

FIG. 10. Contact probabilities used in the derivation of Eq.
�29�.
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Y =
1

2
�A + C + E� ,

Z = D + F + G . �30�

Again, the fact that A�+B�+ ¯ +G�=X+Y +Z confirms that
the equations are consistent.

The recursion equations simplify with the substitution S
�X=Y and T�Z, leading to

�S�

T�
� = � 1

2
qQ�1 + P�2 1

2
qQ2�1 + P�

P2 + pQ�1 + P� 1 − qQ2�1 + P�
��S

T
� . �31�

The scaling of P� near the percolation threshold is domi-
nated by the largest eigenvalue of the recursion matrix, �
= �3+�6� /6 �evaluated at pc�. From this we find the finite-
size exponent �=−ln � / ln 4=0.069 420 7. . . .

In order to compute the order parameter critical exponent
�, we must first replace the scaling relations suitable for
fractals and regular spaces with relations for percolation in
small-world substrata, which are infinite dimensional. In-
stead of Eq. �9� we write

P = ���pNx� , �32�

where the original scaling argument L1/	 has been changed to
Nx, obviating the question of diameter. Using this and a simi-
lar argument to the one leading to Eq. �21�, we now derive

x =
�

�
. �33�

Naively equating this relation to Eq. �21� one obtains x
=1/	d. This is, of course, meaningless, but makes some kind
of sense: because the net is small world, both its dimension d
and the inverse of the correlation length exponent 1 /	 are
infinite, but in such a way that their ratio yields a finite x.

The exponent x is obtained in practice from the recursion
relation for the contact probability and using Eq. �32�:
�N� /N�x=�=�P� /�P�p=pc

. For the decorated �2,2� flower we
find x=0, so that �=�. Iterated curves of P� �for n→��
indeed show a transition at pc=5/32 with an infinite order
parameter exponent � �Fig. 11�.

IV. DISCUSSION

We have studied the percolation phase transition in a class
of hierarchical scale-free nets that can be built to display a
large variety of structural properties and that can be analyzed
exactly. When the scale-free nets are also fractal—that is,
when the mass of the net increases as a power of its
diameter—percolation is very similar to what is found in
regular lattices. We do not see any specific signature that
might be ascribed to the scale-free degree distribution.

Percolation in small-world hierarchical lattices is more
exotic. In the �1,v� flowers, we find that there is no perco-
lation phase transition: the system is always in the percolat-
ing phase, even as the bonds get diluted to concentration p

→0. This is in line with what is known for stochastic scale-
free nets of degree exponent ��3. However, for �1,v� flow-
ers the percolation phase transition fails to appear even as v
�and �� increase without bound. To be sure, P��p� flattens
more pronouncedly about the origin, reaching near-zero
probability at wider and wider regions of p, as v increases,
but there is no transition nevertheless—see Eq. �27�. A pos-
sible cause for the exceptional resilience of �1,v� flowers is
their being strongly assortative, compared to stochastic and
everyday-life scale-free nets.

We then studied percolation in the decorated �2,2� flower,
a hierarchical scale-free net of degree exponent �=3 that is
small world and disassortative. In this case there is a perco-
lation phase transition at a finite pc, and the order parameter
critical exponent characterizing the transition is �=�. This
agrees with the result for percolation in stochastic scale-free
nets, that �=1/ ��−3� �6�, since the degree exponent of the
decorated �2,2� flower is �=3. However, the finding in our
case is generic: one can show that �=� for decorated flow-
ers with other 1�u�v values, independently of �. The same
is true for the �2,2� flower decorated with two noniterated
links �connecting the two pairs of opposite hubs�. The deco-
rated �2,2� flower and similar constructs closely mimic
everyday-life stochastic scale-free nets �small world, disas-
sortative, and high degree of clustering�. Why is it then that
they cannot reproduce a phase transition with finite �? Per-
haps we are still missing out on some crucial structural prop-
erty, common to everyday-life stochastic networks. Another
possibility is that it is a consequence of the hierarchical flow-
ers being finitely ramified �they can be disjointed by remov-
ing a finite number of nodes, regardless of the graphs’ sizes�.
We do not know whether a finite ramification is typical of
everyday-life networks. Finding out the answers to these
questions will shed further light on the structure of the com-
plex nets around us.
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FIG. 11. �Color online� P� for the decorated �2,2� flower.
Shown are curves for generations n=6, 7, 8, 9, 10, 11, and �. Inset:
detail of p= pc, showing that P���p− pc�� with �=�.
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